Journal of Computational Physié§1,676—-683 (1999) ®
]
Article ID jeph.1999.6213, available online at http://www.idealibrary.conl DE &l.

An Accurate Compact Treatment of Pressure
for Colocated Variables

Emmanuel Dormy

University of California at Los Angeles, |I.G.P.P., 405 Hilgard Avenue, Los Angeles, California 90095-156
E-mail: dormy@math.ucla.edu

Received August 12, 1998; revised January 20, 1999

We propose a new scheme for the pressure treatment in computations of incom-
pressible flow using a colocated grid arrangement. To avoid oscillations associated
with the sparse non-compact stencil, we introduce a compact fourth-order equivalent
of this stencil and study its advantages over the classical second-order averaging
procedure. @ 1999 Academic Press
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1. INTRODUCTION

When computing incompressible Navier—Stokes equations on a non-staggered (
cated) grid, a Poisson equation is to be solved for the pressure (or pseudo pressure
fractional step formalism). The numerical instability, often referred to as the “checkerbc
problem” or “odd—even decoupling problem” then has to be addressed. This problem a
when second-order central difference approximations are implemented for both the pre:
gradient operator in the momentum equation and the divergence operator in the conti
equation (or, with the cell centered finite volume formalism, if fluxes are obtained by ¢
tral differencing), and when the discrete Poisson equation is defined, in a consisten
conservative manner, as the product of these two operators [1, 2]. This Poisson equatio
responds to a non-compact sparse stencil and produces an oscillatory pressure field. V
approaches have been used to overcome this difficulty. Van der Wijngaart [3] proposed t
ter out the oscillations. To introduce a coupling term, Russel and Abdallah [4] increasec
order of the divergence operator at the cost of an enlargement of the stencil for the dis
Laplace operator. The most common approach (here referred to as “compact avera
involves the derivation of a non-conservative compact pressure Poisson equation [2, '
This modification is introduced differently depending on the way the pressure is tre
in the time integration. It can be understood as a smoothing of the pressure field thre
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an artificial dissipation. The energy conserving property of the scheme is destroyed in
process. The error thus introduced in the discrete continuity equation is proportional tc
fourth-order derivatives of the pressure [8]. The idea of the present method is to introc
a fourth-order “compact equivalent” to the conservative discrete pressure equation.

2. GENERAL METHODOLOGY

In the following, we will present the method using the fractional step formalism (fir:
order accurate in time [9]), though it can probably be generalized to the pressure corre
approach or other schemes. We will thus suppose a velocityfieldhich does not satisfy
the continuity equation (for instance obtained by time-advancing the Navier—Stokes e
tions without invoking continuity) and we want to project it onto a divergence-free field
subtracting the gradient of a pressure-like varighko that

U=u*— Vhe. 1)

Taking the divergence of this equation and requinintp satisfy the continuity equation
gives

Aongp = Vi - U*, 2

where Ay, stands for the second-order centered approximation of the Laplacian skipy
the neighboring points (as represented on Fig. 1a). The sparse nature of this operator le
pressure oscillations. A possible remedy to this problem is to interpolate variables line
which leads to a second-order approximation of (2)

Angp = Vi - U*. )
We will refer to this in the sequel as the “compact averaged” scheme. This scheme ce

interpreted as adding a second-order dissipative term to the pressure in order to dan
oscillations. In the following we will derive fourth-order compact equivalents of (2).

FIG. 1. Computational molecules for the three-dimensional pressure equation; only the black points are
for the computation. (a) Tha,, operator, being defined as the product of numerical divergence of the gradie
accurate but oscillating. (b) The 7 points compact operator obtained by interpolation. (c) The 19 points fourth-
compact equivalent operator.
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2.1. One Dimension Compact Derivation

Using the expression of truncation error for the second-order finite difference schen

Anp = — + ——— + O(h"), @)
one easily derives the second-order error introduced in replacing (2) with (3):

2 04
Ang = Aong — %% +0(h%). ®)
The error thus introduced is of the same order as the one for the discretization sct
(see [2, 4]). However, the discrete Laplacian is only a second-order estimate of the dis
divergence of the gradient. Using the fractional step procedure described above (set
11, 9]) thus leads to a modified velocity field in which numerical errors in the diverger
are significantly higher than roundoff error.
The consistent derivation of the pressure-like equation gives

Aondp = Vi - U, (6)
9%p h23% . 4
W“FEW—Vh-U +O(h%). )

Using a Hermitian compact expression one can derive a fourth-order approximatio

h? 9%
A ——— =Vj-u* h?
hd+ g asa = VUt OM, (8)

2
Angp = [I _ h4Ah] (Vh - U + O(h%, ©)

wherel stand for the identity operator.

Note that this compact scheme was not derived to increase the accuracy of the contir
operator approximation as is the case for other compact formulations [12—18]. Inste
is derived to approximate to a higher accuracy the conservative non-compact stencil.
compact scheme we propose (9) is still second-order accurate, but has the same seconc
behavior as the conservative sparse stencil (6). The overall accuracy of the discretiz
is thus second-order in space and first-order in time, but the dilatation effects assoc
with the non-conservative treatment of the pressure are reduced to a fourth order. Nott
this approach also shares some similarity with what is refered to as “improving the ol
of approximation” in the Support Operator formalism [19].

2.2. Three-Dimensions Generalization

The idea of the previous paragraph can be adapted to three-dimensional problems, tt
this is not straightforward. The original non-compact formulation can be written as

3% h2d% 32 h2 54¢ 3%2¢ h2 3%
X o) =+ 2T o)+ —+ 240 (hY) =V, -ut (10
8X2+3 8X4+ ( X)+8y2+3 3y4+ ( y)+322+3 8Z4+ ( z) h-u (10)

Note that the second-order terms cannot be easily expressed in teWps of.
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2.2.1. Single Step Procedure

Following the method used by Spotz and Carey [15] (but with a non-uniform grid
compact fourth-order approximation to (10) can be derived in the form

1 1
Axt+ Ayt + Aop — 2 Ax [N Ayg + N A0] — ZAY[MEAD +hEA9]

4
1 h2 h2 h2
— ZAZ[hiqus +hiAyg] ~ |1 — ZXAX - ZyAy - fAz (Vh-u), (11)

whereAy, Ay, A, stand for theh-discrete three point Laplace scheme respectively in tl
X, Y, andz directions. Notice that this expression not only involves a modification of t
right-hand side (rhs), but also a modification of the operator on the left-hand side (lhs),
the addition of extra diagonal terms. The corresponding 19 poortgutational molecule
is displayed in Fig. 1c.

2.2.2. Two Step Procedure

The previous approach corresponds to a direct adaptation of the one-dimensional
to the three-dimensional case. It achieves fourth-order accuracy, but only at the cost
modification of the Ihs itself for the treatment of cross derivatives. In two spatial dimensi
this would only increase the stencil from five to nine points. In three space dimensi
however this increase is much more important as the standard seven-points stencil t
be modified to a nineteen-points molecule. This significantly increases the computati
time required. It was found (see Subsection 3.1) that the number of iterations to resolve
problem with a CGSTAB algorithm [20] is about three times that required by the nine-poi
scheme.

We propose here an alternative two-step approach that allows fourth-order accura
twice the computational cost of the second-order interpolated scheme. Equation (10
be approximated with fourth-order accuracy using a two-step procedure. The first stej
second order approximation to the second-order truncation terms written as

4 4 4
Any = (hﬁaax4 + h§83—y4 + h§;Z4>Vh Ui (12)
Technically, evaluation of the rhs of (12) involves higher order derivativdgpfu* which
implicates larger stencils (five-point stencils in 1D).
A second step usep as a correction term:

! V. (13)

Ah¢ = Vi -u* —
ho h 2

Note thatyr scales a€)(h?) and that (13) is thus consistent with (2).

The pressure thus defined satisfies (2) to the fourth-order (as with the previous met
and the computational cost is exactly twice the cost of the second order scheme as e:
the steps requires the resolution of a seven-points compact Laplace operator (of the
displayed in Fig. 1b).

Though the |hs stencils are simple and compact, the rhs of the first step involves a
compact stencil. However, this does not increase the numerical cost as this term doe
need to be inverted.
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3. NUMERICAL EXAMPLES

3.1. One-Dimensional Function

Though incompressible flow in one dimension of space is a rather limited notion,
want to test the ability of the scheme on a simple problem. Let us assume a velocity
u* of the form

u* = sin(4rx), x € [0, 1]. (14)

Application of the procedure described in Subsection 2.1 to this one-dimensional func
should obviously lead to

u=u*"—Vyp =0. (15)

The compact fourth-order scheme used here (9) is defined implicitly as
1 1 . 1 . 1 .
p2(@-1= 200 +di40) = (Vi Ui+ S (Vi - Ui+ 2 (Vi Ui, (16)

We report in Table | the errors (defined as the maximum of the absolute vaRig af)
with varying discretizations, solutions are represented in Fig. 2. The orders of the var
schemes are vindicated.

It should be noted that, in one dimension, the compact scheme only requires an addit
multiplication by a tridiagonal matrix on the rhs (as compared with the compact avera
scheme). The computational cost of the compact equivalent scheme is thus very simi
that of the compact averaged approach.

3.2. Three-Dimensional Flow

We have constructed a code for the purpose of studying three-dimensional rapidly rot:
magnetohydrodynamic buoyancy-driven turbulence. Itis known [24] that buoyancy-affec
flows require a fine pressure-velocity coupling. Furthermore, in the physical problem
motivated this work, we expect from previous studies [21] plate-like shear zones. |
important to compute gradients in these regions accurately. This motivated the choic

TABLE |
Errors (Maximum of the Absolute Value) in the Numerical
Divergence with Varying Grid Sizes ()

N CA. C.E.
20 112 0.11
40 0.30 7.410°3
80 7.70 1072 4.74.10*
160 193102 2.98-10°
320 4.8410°3 1.86-10°°

Note As expected, the compact averaged scheme’s error (C.A.) evolves
as /N2, while the fourth-order compact equivalent scheme’s error (C.E.)
evolves as AN“. The solution derived using the sparse non-compact
scheme is of the order of the numerical zero (abouat%)0
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FIG. 2. Starting with a velocity fieldi*, which does not satisfy the continuity condition, we want to comput
the velocity fieldu by subtracting the gradient of a pseudo-pressure. This is done by solving a discrete Poi
equation, using fou, the natural expressiof,, (accurate but leading to oscillations); inrthe compact averaged
schemeAy,; for us the fourth-order compact equivalentsf,. Errors when varying the discretization are reportec
in Table I.

colocated variables though the geometry is rather simple. In a work in preparation, we
adaptations of the ENO scheme [22, 23] for advective transport on incompressible fls
This also motivated the development of the present equivalent scheme for the pre:
gradient.

We use here our code with no magnetic field and no rotation and we study a simple lan
buoyancy-driven flow of a Boussinesq fluid in a fully periodic domain. Time integration
performed using the optimal second-order TVD (total variation diminishing) Runge—Kt
method [23] (see also [11]). We report here some results obtained with the above desc
scheme.

Figure 3 displays the time evolution of the divergence after each full time step. The si
step compact equivalent approach is found to give accurate results in three dimens
The single step procedure leads with ax580 x 25 grid to a decrease of the error in the
numerical divergence of a coefficient about 14. This method led to a significant increas
the required CPU time (about a factor three with the compact averaged scheme). The
step algorithm is found to give slightly better and more regular results (probably becaus
achieve a better resolution of the seven-point stencil with our iterative solver). As expe
it requires twice the computational time of the compact averaged method, although it
found numerically thaty does not need to be computed with as great an accuragy a
Relaxing the precision constraint ah we were able to obtain a fourth-order accurat
solution with only 50% more time than the second-order averaged computation.

4. CONCLUSION

We introduced a compact fourth-order equivalent of the pressure equation for the disi
resolution of the incompressible Navier—Stokes equation. This approach suppresse
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FIG. 3. Time evolution of the numerical divergence in three-dimensional simulations of a buoyancy dri
convective flow (resolution is 58 50 x 25). The computation starts with a flow computed using the C.A. methot
Integration with the C.A. method gives the solid line curve. Introduction of the mass matrix of the single step fot
order compact equivalent scheme improves the solution a little, though the overall accuracy is still second
(dashed curve). Modification of the operator to obtain fourth-order accuracy requires a stronger computal
effort but yields much better results (bold curve). Finally the two-step method (dashed bold) gives as good (|
better) results for a lower computational effort. None of these simulations is oscillating because of the con
nature of the operators used.

spatial odd—even decoupling of the pressure field without adding a second-order dan
term (as was previously the case). This significantly reduces the residual errorsin the dis
continuity equation.

Three-dimensional simulations have been performed and this approach has been s
to give satisfactory results at a reasonable computational cost (using a two-step algori
for the fully periodic buoyancy driven flow that motivated this study.

Further important issues remain to be addressed about the scheme introduced here
as the treatment of boundary conditions (e.g., see [25]) as well as the generalization o
technique to unstructured grids.
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