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We propose a new scheme for the pressure treatment in computations of incom-
pressible flow using a colocated grid arrangement. To avoid oscillations associated
with the sparse non-compact stencil, we introduce a compact fourth-order equivalent
of this stencil and study its advantages over the classical second-order averaging
procedure. c© 1999 Academic Press
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1. INTRODUCTION

When computing incompressible Navier–Stokes equations on a non-staggered (colo-
cated) grid, a Poisson equation is to be solved for the pressure (or pseudo pressure in the
fractional step formalism). The numerical instability, often referred to as the “checkerboard
problem” or “odd–even decoupling problem” then has to be addressed. This problem arises
when second-order central difference approximations are implemented for both the pressure
gradient operator in the momentum equation and the divergence operator in the continuity
equation (or, with the cell centered finite volume formalism, if fluxes are obtained by cen-
tral differencing), and when the discrete Poisson equation is defined, in a consistent and
conservative manner, as the product of these two operators [1, 2]. This Poisson equation cor-
responds to a non-compact sparse stencil and produces an oscillatory pressure field. Various
approaches have been used to overcome this difficulty. Van der Wijngaart [3] proposed to fil-
ter out the oscillations. To introduce a coupling term, Russel and Abdallah [4] increased the
order of the divergence operator at the cost of an enlargement of the stencil for the discrete
Laplace operator. The most common approach (here referred to as “compact averaged”)
involves the derivation of a non-conservative compact pressure Poisson equation [2, 5–7].
This modification is introduced differently depending on the way the pressure is treated
in the time integration. It can be understood as a smoothing of the pressure field through
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an artificial dissipation. The energy conserving property of the scheme is destroyed in this
process. The error thus introduced in the discrete continuity equation is proportional to the
fourth-order derivatives of the pressure [8]. The idea of the present method is to introduce
a fourth-order “compact equivalent” to the conservative discrete pressure equation.

2. GENERAL METHODOLOGY

In the following, we will present the method using the fractional step formalism (first-
order accurate in time [9]), though it can probably be generalized to the pressure correction
approach or other schemes. We will thus suppose a velocity fieldu∗, which does not satisfy
the continuity equation (for instance obtained by time-advancing the Navier–Stokes equa-
tions without invoking continuity) and we want to project it onto a divergence-free field by
subtracting the gradient of a pressure-like variableφ so that

u = u∗ −∇hφ. (1)

Taking the divergence of this equation and requiringu to satisfy the continuity equation
gives

12hφ =∇h · u∗, (2)

where12h stands for the second-order centered approximation of the Laplacian skipping
the neighboring points (as represented on Fig. 1a). The sparse nature of this operator leads to
pressure oscillations. A possible remedy to this problem is to interpolate variables linearly,
which leads to a second-order approximation of (2)

1hφ =∇h · u∗. (3)

We will refer to this in the sequel as the “compact averaged” scheme. This scheme can be
interpreted as adding a second-order dissipative term to the pressure in order to damp the
oscillations. In the following we will derive fourth-order compact equivalents of (2).

FIG. 1. Computational molecules for the three-dimensional pressure equation; only the black points are used
for the computation. (a) The12h operator, being defined as the product of numerical divergence of the gradient,
accurate but oscillating. (b) The 7 points compact operator obtained by interpolation. (c) The 19 points fourth-order
compact equivalent operator.
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2.1. One Dimension Compact Derivation

Using the expression of truncation error for the second-order finite difference scheme

1hφ = ∂2φ

∂x2
+ h2

12

∂4φ

∂x4
+O(h4), (4)

one easily derives the second-order error introduced in replacing (2) with (3):

1hφ = 12hφ − h2

4

∂4φ

∂x4
+O(h4). (5)

The error thus introduced is of the same order as the one for the discretization scheme
(see [2, 4]). However, the discrete Laplacian is only a second-order estimate of the discrete
divergence of the gradient. Using the fractional step procedure described above (see [10,
11, 9]) thus leads to a modified velocity field in which numerical errors in the divergence
are significantly higher than roundoff error.

The consistent derivation of the pressure-like equation gives

12hφ = ∇h · u∗, (6)

∂2φ

∂x2
+ h2

3

∂4φ

∂x4
= ∇h · u∗ +O(h4). (7)

Using a Hermitian compact expression one can derive a fourth-order approximation of
Eq. (7),

1hφ + h2

4

∂4φ

∂x4
= ∇h · u∗ +O(h4), (8)

1hφ =
[

I − h2

4
1h

]
(∇h · u∗)+O(h4), (9)

whereI stand for the identity operator.
Note that this compact scheme was not derived to increase the accuracy of the continuous

operator approximation as is the case for other compact formulations [12–18]. Instead it
is derived to approximate to a higher accuracy the conservative non-compact stencil. The
compact scheme we propose (9) is still second-order accurate, but has the same second-order
behavior as the conservative sparse stencil (6). The overall accuracy of the discretization
is thus second-order in space and first-order in time, but the dilatation effects associated
with the non-conservative treatment of the pressure are reduced to a fourth order. Note that
this approach also shares some similarity with what is refered to as “improving the order
of approximation” in the Support Operator formalism [19].

2.2. Three-Dimensions Generalization

The idea of the previous paragraph can be adapted to three-dimensional problems, though
this is not straightforward. The original non-compact formulation can be written as

∂2φ

∂x2
+h2

x

3

∂4φ

∂x4
+O(h4

x

)+ ∂2φ

∂y2
+h2

y

3

∂4φ

∂y4
+O(h4

y

)+ ∂2φ

∂z2
+h2

z

3

∂4φ

∂z4
+O(h4

z

)=∇h · u∗. (10)

Note that the second-order terms cannot be easily expressed in terms of∇h · u∗.
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2.2.1. Single Step Procedure

Following the method used by Spotz and Carey [15] (but with a non-uniform grid) a
compact fourth-order approximation to (10) can be derived in the form

1xφ +1yφ +1zφ − 1

4
1x
[
h2

y1yφ + h2
z1zφ

]− 1

4
1y
[
h2

x1xφ + h2
z1zφ

]
− 1

4
1z
[
h2

x1xφ + h2
y1yφ

] ' [I − h2
x

4
1x −

h2
y

4
1y − h2

z

4
1z

]
(∇h · u∗), (11)

where1x,1y,1z stand for theh-discrete three point Laplace scheme respectively in the
x, y, andz directions. Notice that this expression not only involves a modification of the
right-hand side (rhs), but also a modification of the operator on the left-hand side (lhs), with
the addition of extra diagonal terms. The corresponding 19 pointscomputational molecule
is displayed in Fig. 1c.

2.2.2. Two Step Procedure

The previous approach corresponds to a direct adaptation of the one-dimensional idea
to the three-dimensional case. It achieves fourth-order accuracy, but only at the cost of a
modification of the lhs itself for the treatment of cross derivatives. In two spatial dimensions
this would only increase the stencil from five to nine points. In three space dimensions
however this increase is much more important as the standard seven-points stencil has to
be modified to a nineteen-points molecule. This significantly increases the computational
time required. It was found (see Subsection 3.1) that the number of iterations to resolve this
problem with a CGSTAB algorithm [20] is about three times that required by the nine-points
scheme.

We propose here an alternative two-step approach that allows fourth-order accuracy at
twice the computational cost of the second-order interpolated scheme. Equation (10) can
be approximated with fourth-order accuracy using a two-step procedure. The first step is a
second order approximation to the second-order truncation terms written as

1hψ =
(

h2
x

∂4

∂x4
+ h2

y

∂4

∂y4
+ h2

z

∂4

∂z4

)
∇h · u∗. (12)

Technically, evaluation of the rhs of (12) involves higher order derivatives of∇h · u∗ which
implicates larger stencils (five-point stencils in 1D).

A second step usesψ as a correction term:

1hφ =∇h · u∗ − 1

4
ψ. (13)

Note thatψ scales asO(h2) and that (13) is thus consistent with (2).
The pressure thus defined satisfies (2) to the fourth-order (as with the previous method)

and the computational cost is exactly twice the cost of the second order scheme as each of
the steps requires the resolution of a seven-points compact Laplace operator (of the form
displayed in Fig. 1b).

Though the lhs stencils are simple and compact, the rhs of the first step involves a non-
compact stencil. However, this does not increase the numerical cost as this term does not
need to be inverted.
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3. NUMERICAL EXAMPLES

3.1. One-Dimensional Function

Though incompressible flow in one dimension of space is a rather limited notion, we
want to test the ability of the scheme on a simple problem. Let us assume a velocity field
u∗ of the form

u∗ = sin(4πx), x ∈ [0, 1]. (14)

Application of the procedure described in Subsection 2.1 to this one-dimensional function
should obviously lead to

u = u∗ −∇hφ ≡ 0. (15)

The compact fourth-order scheme used here (9) is defined implicitly as

1

h2
(φi−1− 2φi + φi+1) = 1

4
(∇h · u∗)i−1+ 1

2
(∇h · u∗)i + 1

4
(∇h · u∗)i+1. (16)

We report in Table I the errors (defined as the maximum of the absolute value of∇h · u)
with varying discretizations, solutions are represented in Fig. 2. The orders of the various
schemes are vindicated.

It should be noted that, in one dimension, the compact scheme only requires an additional
multiplication by a tridiagonal matrix on the rhs (as compared with the compact averaged
scheme). The computational cost of the compact equivalent scheme is thus very similar to
that of the compact averaged approach.

3.2. Three-Dimensional Flow

We have constructed a code for the purpose of studying three-dimensional rapidly rotating
magnetohydrodynamic buoyancy-driven turbulence. It is known [24] that buoyancy-affected
flows require a fine pressure-velocity coupling. Furthermore, in the physical problem that
motivated this work, we expect from previous studies [21] plate-like shear zones. It is
important to compute gradients in these regions accurately. This motivated the choice of

TABLE I

Errors (Maximum of the Absolute Value) in the Numerical

Divergence with Varying Grid Sizes (N)

N C.A. C.E.

20 1.12 0.11
40 0.30 7.4· 10−3

80 7.70· 10−2 4.74· 10−4

160 1.93· 10−2 2.98· 10−5

320 4.84· 10−3 1.86· 10−6

Note. As expected, the compact averaged scheme’s error (C.A.) evolves
as 1/N2, while the fourth-order compact equivalent scheme’s error (C.E.)
evolves as 1/N4. The solution derived using the sparse non-compact
scheme is of the order of the numerical zero (about 10−13).
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FIG. 2. Starting with a velocity fieldu∗, which does not satisfy the continuity condition, we want to compute
the velocity fieldu by subtracting the gradient of a pseudo-pressure. This is done by solving a discrete Poisson
equation, using foru1 the natural expression12h (accurate but leading to oscillations); foru2 the compact averaged
scheme1h; for u3 the fourth-order compact equivalent of12h. Errors when varying the discretization are reported
in Table I.

colocated variables though the geometry is rather simple. In a work in preparation, we test
adaptations of the ENO scheme [22, 23] for advective transport on incompressible flows.
This also motivated the development of the present equivalent scheme for the pressure
gradient.

We use here our code with no magnetic field and no rotation and we study a simple laminar
buoyancy-driven flow of a Boussinesq fluid in a fully periodic domain. Time integration is
performed using the optimal second-order TVD (total variation diminishing) Runge–Kutta
method [23] (see also [11]). We report here some results obtained with the above described
scheme.

Figure 3 displays the time evolution of the divergence after each full time step. The single
step compact equivalent approach is found to give accurate results in three dimensions.
The single step procedure leads with a 50× 50× 25 grid to a decrease of the error in the
numerical divergence of a coefficient about 14. This method led to a significant increase of
the required CPU time (about a factor three with the compact averaged scheme). The two-
step algorithm is found to give slightly better and more regular results (probably because we
achieve a better resolution of the seven-point stencil with our iterative solver). As expected
it requires twice the computational time of the compact averaged method, although it was
found numerically thatψ does not need to be computed with as great an accuracy asφ.
Relaxing the precision constraint onψ we were able to obtain a fourth-order accurate
solution with only 50% more time than the second-order averaged computation.

4. CONCLUSION

We introduced a compact fourth-order equivalent of the pressure equation for the discrete
resolution of the incompressible Navier–Stokes equation. This approach suppresses the
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FIG. 3. Time evolution of the numerical divergence in three-dimensional simulations of a buoyancy driven
convective flow (resolution is 50× 50× 25). The computation starts with a flow computed using the C.A. method.
Integration with the C.A. method gives the solid line curve. Introduction of the mass matrix of the single step fourth-
order compact equivalent scheme improves the solution a little, though the overall accuracy is still second order
(dashed curve). Modification of the operator to obtain fourth-order accuracy requires a stronger computational
effort but yields much better results (bold curve). Finally the two-step method (dashed bold) gives as good (if not
better) results for a lower computational effort. None of these simulations is oscillating because of the compact
nature of the operators used.

spatial odd–even decoupling of the pressure field without adding a second-order damping
term (as was previously the case). This significantly reduces the residual errors in the discrete
continuity equation.

Three-dimensional simulations have been performed and this approach has been shown
to give satisfactory results at a reasonable computational cost (using a two-step algorithm)
for the fully periodic buoyancy driven flow that motivated this study.

Further important issues remain to be addressed about the scheme introduced here, such
as the treatment of boundary conditions (e.g., see [25]) as well as the generalization of this
technique to unstructured grids.
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5. M. Perić, R. Kessler, and G. Scheuerer, Comparison of finite-volume numerical methods with staggered and
colocated grids,Comput. & Fluids16(4), 389 (1988).

6. S. Abdallah, Numerical solutions of the pressure Poisson equation with Neumann boundary conditions using
a non-staggered grid,J. Comput. Phys.70, 182, 193 (1987).

7. C. M. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation,
AIAA J.21(11), 1525 (1983).

8. F. Sotiropoulos and S. Abdallah, The discrete continuity equation in primitive variable solutions of incom-
pressible flow,J. Comput. Phys.95, 212 (1991).

9. J. B. Perot, An analysis of the fractional step method,J. Comput. Phys.108, 51 (1993).

10. J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations,
J. Comput. Phys.59, 308 (1985).

11. H. Le and P. Moin, An improvement of fractional-step methods for the incompressible Navier–Stokes equa-
tions,J. Comput. Phys.92, 369 (1991).

12. R. Hirsh, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing
technique,J. Comput. Phys.19, 90 (1975).

13. M. Gupta, High accuracy solutions of incompressible Navier–Stokes equations,J. Comput. Phys.93, 343
(1991).

14. S. Lele, Compact finite-difference schemes with spectral-like resolution,J. Comput. Phys.103, 16 (1992).

15. W. Spotz and G. Carey, A high-order compact formulation for the 3D Poisson equation,Numer. Methods
Partial Differentiel Equations12, 235 (1996).

16. W. E. Liu and J.-G. Liu, Essentially compact schemes for unsteady viscous incompressible flows,J. Comput.
Phys.126, 122 (1996).

17. W. E and J.-G. Liu, Finite difference methods for 3D viscous incompressible flows in the vorticity-vector
potential formulation on non-staggered grids,J. Comput. Phys.138, 57 (1997).

18. J. Strikwerda, High-order-accurate schemes for incompressible viscous flow,Int. J. Numer. Methods Fluids
24, 715 (1997).

19. M. Shashkov,Conservative Finite-Difference Methods on General Grids(CRC Press, Boca Raton, FL, 1996).

20. H. A. Van den Vorst, BI-GCSTAB: A fast and smoothly converging variant of BI-CG for the solution of
non-symmetric linear systems,SIAM J. Sci. Stat. Comput.13, 631 (1992).

21. M. G. StPierre, On the local nature of turbulence in Earth’s outer core,Geophys. Astrophys. Fluid Dynam.
83, 293 (1996).

22. A. Harten, B. Engquist, S. Osher, and C. Shakravarthy, Uniformly high order essentially non-oscillatory
schemes, III,J. Comput. Phys.71, 231 (1987).

23. C. W. Shu,Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic
Conservation Laws, ICASE Report No. 97-65, NASA/CR-97-206253, 1997.

24. P. Johansson and L. Davidson, Modified collocated simplec algorithm applied to buoyancy-affected turbulent
flow using a multigrid solution procedure,Numer. Heat Transfer B28, 39 (1995).

25. M. H. Carpenter, D. Gottlieb, and S. Abarbanel, The stability of numerical boundary treatments for compact
high-order finite-difference schemes,J. Comput. Phys.108, 272 (1993).


	1. INTRODUCTION
	2. GENERAL METHODOLOGY
	FIG. 1.

	3. NUMERICAL EXAMPLES
	TABLE I
	FIG. 2.
	FIG. 3.

	4. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

